发表论文30余篇,第一/通讯10篇。其中SCI论文13篇,含一区TOP 5篇,EI及核心期刊20余篇,主要论文情况如下:
(1)Zhang H, Yang S, Ning X, et al. Hyper-neighborhood context-aware transformer network for high-resolution remote sensing change detection[J]. International Journal of Applied Earth Observation and Geoinformation, 2025, 144: 104861.(SCI一区TOP)
(2)Zhang R, Zhang H*, Ning X, et al. Global-aware siamese network for change detection on remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 199: 61-72.(SCI一区TOP,ESI高被引论文)
(3)Ning X, Zhang H*, Zhang R, et al. Multi-stage progressive change detection on high resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 207: 231-244.(SCI一区TOP,ESI高被引论文)
(4)Ning X, Zhang H*, Shao Z, et al. Sustainability Evaluation of Chinese Capital Cities Based on Urban Geographic Environment Index[J]. Remote Sensing, 2023, 15(8): 1966.
(5)He Y, Zhang H*, Ning X, et al. Spatial-Temporal Semantic Perception Network for Remote Sensing Image Semantic Change Detection[J]. Remote Sensing, 2023, 15(16): 4095.
(6)Meng X, Zhu L, Han Y, Zhang H*. We Need to Communicate: Communicating Attention Network for Semantic Segmentation of High-Resolution Remote Sensing Images[J]. Remote Sensing, 2023, 15(14): 3619.
(7)Zhang H, He Y, Ning X, et al. Panoramic Change Analysis Framework (PCA-F): A New Method for Large-Scale Change Detection in High-Resolution Remote Sensing Images[C]//IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2024: 10259-10263.
(8)Zhang H, Zhang R, Ning X, et al. LIM-CD: A LARGE-SCALE REMOTE SENSING CHANGE DETECTION DATASET FOR INCREMENTAL MONITORING[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, 10: 903-910.
(9)Zhang H, Shao Z, Ning X, Wang H. Spatiotemporal Pattern Analysis of China’s Cities Based on High-Resolution Imagery from 2000 to 2015[J]. ISPRS International Journal of Geo-Information, 2019, 8(5): 241.
(10)Chen Y, Ning X, Zhang R, et al. ESMII-Net: An edge-synergy and multidimensional information interaction network for remote sensing change detection[J]. International Journal of Applied Earth Observation and Geoinformation, 2025, 139: 104507.
(11)Lu K, Zhang R, Huang X,Zhang H,et al. Pattern Integration and Enhancement Vision Transformer for Self-Supervised Learning in Remote Sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025.(SCI一区)
(12)Guo P, Yang S, Zhang H, et al. HRMS-SCD: A High-Resolution Multi-Scene Satellite Imagery Dataset for Comprehensive Land-Cover Semantic Change Detection[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2025: 323-331.
(13)Chen Y, Zhang R, Ning X, et al. Change Dino: A Unified Transformer-Based Framework For Object-Level Change Detection and Segmentation in Remote Sensing Imagery[C]//IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2024: 8585-8589.
(14)Ning X, He Y, Zhang H, et al. Semantic Information Collaboration Network for Semantic Change Detection in Remote Sensing Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 12893-12909.
(15)Pan J, Cui W, An X, et al. MapsNet: Multi-level feature constraint and fusion network for change detection[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 108: 102676.(SCI一区TOP)
(16)Liu Xiaojiang, Ning Xiaogang, Wang Hao, Wang Chenggang, Zhang Hanchao, Mengjing, et al. A Rapid and Automated Urban Boundary Extraction Method Based on Nighttime Light Data in China[J]. Remote Sensing, 2019, 11(9): 1126.
(17)Wang Hao, Ning Xiaogang, Zhang Hanchao, Liu Yafei. Urban Boundary Extraction And Urban Sprawl Measurement Using High-Resolution Remote Sensing Images: A Case Study of China's Provincial Capital[J]. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2018, 42(3).
(18)Chen Qi, Wang Huan, Zhang Hanchao, et al. A point cloud filtering approach to generating DTMs for steep mountainous areas and adjacent residential areas[J]. Remote sensing, 2016, 8(1): 71.
(19)Ding Lin, Shao Zhenfeng, Zhang Hanchao, et al. A comprehensive evaluation of urban sustainable development in China based on the TOPSIS-Entropy method[J]. Sustainability, 2016, 8(8): 746.
(20)宁晓刚,张翰超,张瑞倩.遥感影像高可信智能不变检测技术框架与方法实践[J].测绘学报,2024,53(06):1098-1112.
(21)李刚,宁晓刚,张翰超,等.“三调”成果数据引导的耕地“非农化”遥感监测[J].测绘科学,2022,47(07):149-159.DOI:10.16251/j.cnki.1009-2307.2022.07.020.
(22)王熙,宁晓刚,张翰超,等.融合LJ1-01夜间灯光和微信定位数据的人口空间化——以北京市为例[J].测绘科学,2022,47(02):173-183.DOI:10.16251/j.cnki.1009-2307.2022.02.023.
(23)朱晓霞,宁晓刚,王浩,等.高精度地表覆盖数据优化分割的土地利用分类[J].测绘科学,2021,46(06):140-149.DOI:10.16251/j.cnki.1009-2307.2021.06.021.
(24)王欢,张翰超,张艳,等.针对山区点云的渐进加密三角网滤波改进算法[J].地理空间信息,2020,18(12):27-30+6.
(25)田子陶,陈晓勇,张翰超.融合时序数据和面板数据的LSTM-RBF城区面积预测模型[J].测绘与空间地理信息,2020,43(05):116-120.
(26)王浩,刘娅菲,宁晓刚,等.城区边界遥感提取研究进展[J].测绘科学,2019,44(06):159-165.DOI:10.16251/j.cnki.1009-2307.2019.06.023.
(27)宁晓刚,王浩,张翰超,等.2000—2016年中国地级以上城市高精度城区边界遥感提取及时空扩展分析[J].武汉大学学报(信息科学版),2018,43(12):1916-1926.DOI:10.13203/j.whugis20180183.
(28)张翰超,宁晓刚,王浩,邵振峰.基于高分辨率遥感影像的2000-2015年中国省会城市高精度扩张监测与分析[J].地理学报,2018,73(12):2345-2363.
(1)张翰超,宁晓刚,李刚,张瑞倩,王浩,郝铭辉.基于不变信息样本筛选的耕地范围变化检测方法及装置[P].北京市: ZL 2021 1 1184439.0,2021-10-11, 2024-05-10.
(2)张翰超,宁晓刚,李刚,王浩,郝铭辉.基于邻接关系分析的景观空间区域完整度评价方法及系统[P].北京市:ZL 202110558987.9,2023-12-01.
(3)宁晓刚,张翰超,祁鑫博,王浩,郝铭辉,张瑞倩.基于影像魔方的遥感影像增强降采样方法及系统[P].北京市: ZL202110246373.7,2022-06-07.
(4)张翰超,宁晓刚,祁鑫博,杨懿,王浩.基于不变检测策略的新增建设用地遥感监测方法及设备[P].北京市: ZL202010708826.9,2022-08-16.
(5)张翰超,宁晓刚,王浩,高小明,李国元,陈继溢.基于遥感影像场景分割的城区智能提取方法、系统及设备[P].北京市: ZL202010452028.4, 2021-03-23.
(6)张翰超,邵振峰,丁霖,金姣.基于尺度空间的自适应山谷山脊线提取方法及系统[P].湖北: ZL201511017204.7, 2019.03.19.
(7)邵振峰,张翰超,丁霖,金姣.一种基于数字表面模型的城市汇水区提取方法[P].湖北: ZL201610063527.8, 2016-07-06.